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OPTIMAL SHORT-RANGE TRAJECTORIES FOR HELICOPTERS

G. 1. Slater
University of Cincinnati

H. Erzberger
Ames Research Center

SUMMARY

An optimal flightpath algorithm using a simplified altitude state model and an
a priori climb-cruise-descent flight profile has been developed and applied to deter­
mine minimum fuel and minimum cost trajectories for a helicopter flying a fixed-range
trajectory. In addition, a method is developed for obtaining a performance model in
simplified form which is based on standard flight-manual data and which is applicable
to the computation of optimal trajectories. The entire performance-optimization
algorithm is simple enough that on-line trajectory optimization is feasible with a
relatively small computer.

The helicopter model used in this study is the Sikorsky S-61N. The results show
that for this vehicle the optimal flight path and optimal cruise altitude can repre­
sent a 10% fuel saving on a minimum-fuel trajectory. The optimal trajectories show
considerable variability because of helicopter weight, ambient winds, and the rela­
tive cost trade-off between time and fuel. In general, "reasonable" variations from
the optimal velocities and cruise altitudes do not significantly degrade the optimal
cost.

For fuel-optimal trajectories, the optimum cruise altitude varies from the maxi­
mum (12,000 ft) to the minimum (0 ft) depending on helicopter weight. If time of
flight is an important component of the cost function, then significant reductions
in flight time from the minimum-fuel trajectory are achieved with only minor increases
in fuel cost.

1. INTRODUCTION

The unique hover and low-speed capabilities of the helicopter have made this
vehicle an important mode of transportation for many applications. Ceneral usage of
helicopters for commercial application has been limited, however, by the relatively
high cost of fuel and flight time for this vehicle, in comparison to the conventional
fixed-wing aircraft. While flightpath optimization seems particularly attractive as
a means of minimizing these costs, two factors have tended to limit the development
of specified operational procedures to allow the pilot to fly optimized flightpaths.
These are: (1) The performance characteristics of the helicopter are quite complex
and exhibit wide variations in weight and altitude. These changes cause subsequent
major differences in the character of the optimal paths. (2) Because the helicopter
is a relatively low-speed vehicle, atmospheric winds also playa significant role in
determining the shape of the optimal ectories. Unless accurate knowledge of
winds is available, a computed optimal trajectory may be significantly in error.

One of the first attempts at flightpath optimization was done Schmitz (ref.
who the takeoff for a heavily loaded helicopter a



variational approach and subsequently tested a "aubop t LmaL" implementation of this
control policy (ref. 2). The work of Olsen (ref. 3) was directed at onboard optimi­
zation of climb and cruise trajectories but utilized only a classical quasi-steady
performance approach.

The purpose of this study is to develop a synthesis procedure to allow onboard
generation of lI op t i ma l " trajectories for helicopters for arbitrary weight and wind
conditions. In particular, trajectories are determined which minimize a cost func­
tion chosen as a weighted sum of time and fuel such that time, fuel, or "cost II can be
minimized by appropriate selection of the weighting factors. The analytical procedure
is based on the method used by Erzberger for fixed-wing aircraft. The method is spe­
cialized here to apply to a performance model representative of a helicopter. Much
of the effort in this study has been toward the generation of an appropriate perfor­
mance model which refiects the variability in the true vehicle, yet is simple enough
to allow onboard, real-time computation of trajectories. In this report we have spe­
cialized our study to the Sikorsky S-61N helicopter. Section 2 of this paper outlines
the performance model used In this study. The development of the optimization proce­
dure is sho\VTI in section 3. The essential characteristics of the optimal trajectories
and differences between these results and the comparable fixed-wing results are
emphasized.

Finally, the application of the optimization algorithm and representative optimal
trajectories for the S-61N helicopter are shown in section 4.

2. DEVELOPHENT OF A HELlCOPTER PERFORMANCE MODEL

In the development of a performance model for the helicopter, two goals influ­
ence our approach. The first goal is to recognize that the primary aim of this effort
is to develop an on-line procedure such that operational helicopters with only mod­
erate onboard computational capability can utilize this model to perform on-line tra­
jectory optimization. The second is to ensure that the model is accurate enough over
the entire operating envelope of the vehicle so that l!optimal!! trajectories that are
computed using this model will not deviate significantly from the "true ll optimal
policy. This "t rue" optimal po is of course unknown and hence it is impossible
to check this second attribute directly. Rather~ the accuracy of our model is gauged
by comparing the predicted performance with the performance values given in the heli­
copter flight manual (ref. 4). To implement the flightpath-optimization algorithm
three rmanc e quantities are required. These are;

(1) Power for level flight (cruise power).

(2) Rate-of-climb and rate-of-descent data.

power ava.i Lab Le and fuel-flow data.

These three items are needed for all velocity and altitudes within the vehicle-flight
e nve as weLl. as for the range of weights and engine-power settings. Our trea.t-
men t of each of these items is found in sections.
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2.1 Cruise Power Required

The difficulties of analytically modeling nonaxial flow through a rotor, and
accurately accounting for various important effects such as stall, compressibility,
etc., make a strictly analytical approach to this problem unreasonable. Yet without
some account of the significant effects on required power caused by these items the
mathematics of the optimization procedure frequently lead to invalid or nonsensical
results. The approach taken in this report is to use only a simple phenomenological
model based on momentum and blade element theories. The flight manual data are then
fit to this simple model using variable coefficients that are functions of vehicle
weight and altitude.

We consider the power required for level cruise to be of the form

(2.1)

The terms PI' PO' and Pp are analytical models of the induced, parasite, and rotor
profile powers, respectively (see a text such as Bramwell (ref. 5) or Gessow and
Myers (ref. 6».

The induced power PI which uses the Glauert approximation is written

(2.2)

where T is the rotor thrust and Vi is the induced velocity given implicitly by

T

In our model we use the assumption T::; lv.

(2.3)

The parasite power represents the power dissipated by fuselage and hub drag and
is written:

(2.4)

The rotor prof ile power, that is, the power dissipated by the rotating blades, is
given by the simple blade element expression (ref. 6)

(2.5)

where
t Lcn s

e is the advance ratio (V!V t ) . Numerical values for the parameters of equa­
(2.3)-(2.5) for the S-6IN arc shown in table 2.1.

These power expressions are quite simplistic and neglect several important terms
such as nonuniform rotor inflow, azimuthal variation of drag coefficient, and addi­
tional unmodeled power terms such as the tail r o t o r power. The model is qualitatively
correct, however, and becomes quite accurate when the coefficients c 1 ' c 2 ' c 3 are
obtained by a least-squares fit of this mode I to the flight manual data.
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Several methods were used to fit a set of coefficients c r' c z, c 3 to the
flight data. In one method, labeled "model B," a least-squares fit was obtained for
a range of weight and altitude combinations. At each weight-altitude combination,
the cruise-power data from the flight handbook was discretized (at 10 knot increments)
and the coefficients obtained from the least-square algorithm. The quality of the
curve fit was good as observed in figures 2.I(a)-2.l(d). For low weights and alti­
tudes the coefficients ci are close to 1 and behave consistently, indicating that
the simple power model expression (2.1) is indeed a good approximation to the data.
At high altitudes and weights, the behavior of the coefficients is erratic, indicat­
ing difficulty in fitting to the simple model (see figs. 2.2(a)-2.2(c». The source
of the difficulty can be partially resolved by replotting the estimated coefficients
as a function of thrust coefficient cT (cT = W/pV~A) in figures 2.3(a)-2.3(c). At
high thrust coefficients (corresponding to high rotor-lift coefficients) the erratic
variation in fit coefficients (particularly c, and c,) is an indication that the
simple rotor power expression (2.1) is inadequate to model the true power variation
with speed. In particular, it is apparent that unmodeled variations with speed in
the rotor profile power are being absorbed into the body drag term which has a V'
variation. To improve the quality of the model the ad hoc stall and compressibility
corrections given by Keys (ref. 7) were included in the least-square algorithms.
These corrections did little to improve the consistency of the coefficients and were
subsequently omitted.

The primary concern in using these data in the power model is the necessity of
interpolating between points to obtain data for the intermediate weights and alti­
tudes. The optimization algorithm is sensitive to derivative information; hence,
there is conCern about the validity of the trajectories obtained in this case. To
improve upon the smoothness of the model an alternate fit technique was applied which
a s sumed that for each weight the coefficients c 1 ' c 2 , c 3 were linear functions of
altitude. The resultant coefficients are shown in figure 2.2 labeled as "A" t-lodel.
This method does indeed improve the smoothness of the fit coefficients; however, the
quality of fit, particularly at high weight and altitude, is decreased as seen in
figure 2.4. In determining the optimal flightpaths, primary use was made of this
smoothed "A" l-lode L, Comparisons of flightpaths computed from the two models are used
to indicate the sensitivity of the trajectory generating algorithm to the slight dif­
ferences in the simplified performance model.

Mass density of the air is the primary atmospheric parameter which determines
aerodynamic forces (temperature is significant if Mach effects are considered). Con­
sequently, in parameterizing a model based on altitude it is assumed that "density
altitude!! is the appropriate definition to use. Since the flight-manual cruise data
are presented for the standard atmosphere, the effect of using this model in a non­
standard atmosphere cannot be evaluated at this time.

2.2 Propulsive Model

The S-61N is a dual-turbine-Gngine-powered helicopter using one of two engine
models currently available. These are the General Electric CTSS-110 engine having a
maximum ccntinuous power (MCP) rating of 1050 SHP and the GE CTSS-140 with an MCP of
1250 SHP per engine. The flight manual contains complete data for both engines; how-
ever, in this report the performance wi th the CT58-140 engine is discussed.
Engine power available is shown as a function of altitude in figure 2.5 for standard

conditions. Performance for off-nominal temperatures is available in the
manual but was not used in this report.
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Engine fuel-flow characteristics corrected for altitude effects are shown in
figure 2.6. Note that for this engine the fuel flow is a linear functiou of power
at all altitudes. Data are available in the manual only at the two altitudes, sea
level and 5000 ft. Using standard engine normalization techniques these data are
extrapolated to other conditions by using the "corrected" fuel flow WFc = WF/618

and the corrected power HP c = HP/6 , where 8 = pIp,. e = T/T o are the pressure
and temperature ratios, respectively. This scaling is validated for the current
engine by noting that under this transformation the corrected fuel flows for
h = sea level and h = 5000 ft coalesce to a single curve.

Optimum steady state cruise performance can be established by using the perfor­
mance models of the previous section in conjunction with the fuel-flow data. The
parameter (I-IF/V) (dimensionally the weight of fuel expended per unit distance trav­
eled) is referred to in this report as the \I cr u i s e cost. 1f In addition to its impor­
tance in conventional quasi-steady performance calculations} this quantity is shown
in succeeding sections of this report to be of fundamental importance in determining
the structure of the fuel optimal trajectories. For each altitude and weight the
minimum fuel cruise cost (WF/V)* = min(WF/V) and the corresponding optimt~ cruise

V
speed V* = arg min(WF/V) are determined. Variations in these quantities for each of

V
the two performance models of the previous section are shown in figures 2.7 and 2.8.
We expect that the minimum cruise cost of the model B is reasonably accurate at each
of the match points. The smoothed model (A) agrees very well at the low gross weight
(13,000-15,000 Ib) and is a poor fit only for the heavy weights (W = 17,000-19,000 Ib)
at the higher altitudes. The large discrepancy at the high altitude for
W, := 19~OOO Ib is not of significance since the optimal trajectories do not enter
this region. At the intermediate weight, W = 17,000 Ib, the two models predict oppo­
site trends with increasing altitude. In this area the fuel optimal trajectories
must be examined carefully to assure that the computed optimal performance is not
significantly sensitive to potential modeling errors.

The minimization shown in figures 2.7 and 2.8 was done without consideration of
the operating limits imposed upon the S-61N. Superimposed with V* on figure 2.8
are the handbook VNE (velocity-never-to-exceed) curves~ It is seen that the uncon­
strained minimization results in optimal cruise speeds consistently falling outside
the VNE curves at the higher altitudes (it should be pointed out tbat handbook
cruise data are also frequently outside this boundary). in subsequent trajectory
minimizations VNE is used as an upper limit on the allowable speed; hence, the
cruise cost shoi\.'U in figure 2.7 is frequently not achieved.

2.3 Climb-Descent Calculations

Cru Ls e-cpowe r curves of helicopter in level flight cannot be directly applied to
the computation of climb performance, unlike those for the fixed-wing aircraft. The
reason is that, in contrast to the fixed-wing aircraft, the helicopter in a climb
experiences very little fuselage rotation. Consequently~ a vertical velocity com­
ponent significantly affects the inflow into the rotor; hence, the force and power
characteristics may Lcan t between level flight and maximum climb rate,
though in a continuous vJay. points out in his report (ref. 7) that climb in a
helicopter is affected an increase in the of producing thrust~ download
on the increased transmission losses and increases in tail rotor power, all
of which have no in f a i r c raf L
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Using a technique suggested by Keys (ref. 7) the helicopter climb is simplified
by introducing an empirical climb (or descent) factor and writing the climb rate h
as

(2.6)

where ( ) indicates either climb or descent, PA is the rotor-shaft power available,
and PR is the level-flight cruise power required. For the climb factor Keys reports
typical values as kCLB ~ 0.70-0.85. The corresponding descent factor kDST ~ 1.

The climb factor for the S-6lN is estimated by comparing the flight manual
maximum-rate-of-climb data to the computed maximum-rate-of-climb data using equa­
tion (2.6). The factor becomes difficult to assess accurately for very low rates of
climb because of inconsistencies between the cruise data and climb data published in
the flight manual (ref. 4). A summary of the computed climb factors for a number of
points is shown in figure 2.9. On the basis of these data a climb factor of 0.75,
shown as a dashed line in figure 2.9, is used throughout this report.

Limited descent data obtained from single-engine operation data indicate that
kDST ~ 1 is reasonable in the descent phase of the trajectory. The relationship of
these factors to the structure of the optimal trajectories is discussed in the next
section.

In the case of fixed-wing aircraft, potential energy (altitude) and kinetic
energy (velocity) are often assumed to be interchangeable and in fact if
E = (h + V2 ) / 2g , then E= (PA - PR)/W is a frequently used performance relation.
For the helicopter, it is seen that potential energy changes are complicated by the
climb and descent factors. We speculate also that when undergoing velocity changes,
an acceleration factor can be introduced, such that

The numerical value of such an acceleration factor is needed if a true-energy-type
analysis is to be performed. Unfortunately, only little data are available at the
present time to allow determination of such a factor. For the performance analysis
carried out in the later sections of this report, this problem is circumvented by
neglecting kinetic-energy effects on the optimal trajectories. The validity of this
assumption is discussed in section 4.

3. FO~~ULATION OF OPTIMAL TRAJECTORY PROBL&~

3.1 Mathematics of Optimization

Using the helicopter performance model of the previous section, we will examine
fixed-range trajectories which optimize some performance index. Typically, we may be
interested in minimum fuel or minimum operating cost~ but~ in genera1 1 we aSsume the

problem can be formulated as minimization of an integral of the form

J i t f
F dt

c

6
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The optimal trajectory is a determination of the altitude h and range x as
functions of time as well as the supplementary variables such as speed, power setting,
flightpath angle, etc. such that performance index (3.1a) achieves a minimum value
subject to a fixed-range constraint and any additional constraints reflecting oper­
ating limits of the vehicle.

The problem as posed fits into the framework of a calculus of variations or
"optimal control" problem. While necessary conditions for optimality are rather easy
to specify (see, e.g., Bryson and Ho (ref. 8» numerical computations of the minimiz­
ing trajectory can be a difficult and time consuming task involving iterative solu­
tions of a nonlinear two-point boundary-value problem. This problem can be simpli­
fied if we assume at the outset an a priori structure for the optimal trajectory.
Using the methodology of Erzberger and Lee (ref. 9) we assume the trajectory can be
split into three distinct segments as shown in figure 3.1. These are: (1) an ascent
segment, (2) a constant altitude cruise segment, and (3) a descent segment. The cost
integral (3.la) can then be written as

O.lb)

To further simplify, we assume the energy per unit we.Lgh t ("energy height")

0.2)

is monotonic on the ascent and descent portions of the trajectories and can be used
as an independent variable. In the fixed-wing case used by Erzberger. the energy
height satisfies

0.3)

where P is the available power from the propulsive system and PR is the power
required for equilibrium (constaut energy) flight. Also in (3.3), the acceleration
normal to the flightpath is considered small. To extend this concept to a rotary­
wing vehicle requires certain additional assumptions. First, on a helicopter, the
rotor itself can serve as a significant energy storage device. If variable rotor
speeds are to be considered then rotor energy should be an additional term in (3.2).
For this study a fixed rotor speed, which is consistent with the flight manual per­
formance curves, was usedo Hence, this term is not present" Second, the performance
model of the helicopter discussed in section 2 differentiates changes in potential
energy (h) and kinetic energy (V2/2g) by use of the climb, descent, and acceleration
factors. This suggests that potential and kinetic energy are not interchangeable on
a trajectory as is generally the case with a conventional aircraft. These complica­
tions can be suppressed by noting that being an inherently low-speed vehicle, the
kinetic-energy term and, in particular, the kinetic-energy changes, are generally
fairly small for a that at V ~ 100 knots, V2/2g ~ 443 ft).
Further, since the changes on the ec t orLe s occur over a fairly sub-
stantial time 5 it is reasonable then to assume that the term
can be ted the need for the acceleration factor.
This also that the !I energy s t a t c" to be used in this t s more simply
just the altitude. Since the ascent and descent of the trajectory
are disjoint, the energy relation (3.3) can be modified for the by
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insertion of the respective climb or descent factor on the appropriate segment of the
trajectory.

Converting to altitude as the independent variable, the cost function (3.1b) can
be written as

I hCR ~(F) (F) 1 (J = - + - dh +
o ft UP -h DST V

F ) R
+ Vw CR CR

(3.4)

where Vw is the wind and RCR is the cruise range. In addition, the range must
satisfy

J" rtF
RF = (V cos y + Vw)up dt + RcR + J~ (V

o t DST

cos y + VW)DST dt

where y is the flightpath angle. Written in terms of h as the independent vari­
able, this becomes

~(V cos. y + Vw). + (V cos_.
y

+ Vw) Jdh + RCR

L h UP h DST

(3.Sa)

The integral constraint (3.Sa) can be more easily treated by introducing a range vari­
able R(h) and rewriting as a differential equation constraint:

(3. Sb)

R(O) RCR (to be determined) (3.6a)

(3.6b)

The problem then becomes one of minimizing integral (3.4) while satisfying the differ­
ential equation constraint (3.Sb) subject to boundary conditions (3.6). The control
variables in the integral (3.4) are the speed V and power available, PA' on the
climb and descent portions of the trajectory. Unlike the conventional energy-state
formulation, large flightpath angles could have easily been incorporated into this
analysis if desired. Since the minimizations are performed holding h fixed, y can
always be calculated explicitly as a function of V and P as y = sin-1(h/V). In
view of the other assumptions required in this analysis, this refinement was omitted
and the small angle ass~~ption was used exclusively in the numerical results presented
in this report.

Using the Pontryagin Minimum Principle, this problem is solved by adjoining the
differential equation constraint (3.Sb) to (3.4) using a co-state variable t. The
resultant Hamiltonian can be distributed into climb and descent components as

.7)
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where

+ (V cos y
(3.8)

= (F +HDST
(V cos y

(-h)
(3.9)

Additionally, we define the augmented function of end conditions

1'F = tv : V) + vRf
\ W CR

(3.10)

where H
segments
The wind
segments.

is a function of the variables V, and P on both the ascent and descent
of the trajectory. During cruise we have the single control variable VCR'
Vw is a specified function of altitude on each of the three trajectory

Application of the minimum principle leads to the following necessary conditions:

Vnp, * argmin(HUp)PUP =
V,P

* * argmin(HDST)VDST' PDST =
V,P

VCR = argmin
(V: VW)V

.t:" (V : VIJh
= hCR Rc f. 0

'f

R = 0c

(3.11a)

(3.11b)

(3.11c)

(3.11d)

If hCR is a free variable, then at the optimal altitude the transversality condition
is:

H* +~ R = 0
3hCR c

For a further discussion of these conditions, see Erzberger (ref. 9).

3.2 Properties of Optimal Controls

(3.11e)

The minimization of Hup and HDST in (3.11) is a double minimization that must
be performed at each altitude. For this study we look at functionals of the form:

F = + cFWF

9
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are cost weighting factors for
the minimum fuel problem. If
model under study, the fuel flow
form:

where WF is the fuel flow rate, and cT and cF
time and fuel, respectively. If cT = 0 we have
cF = 0 we have the minimum time problem. For the
is a linear function of the power available in the

a + bP (3.13)

For the particular problem in this study we show that the available power that mini­
mizes HUp or HDST must always lie on the boundary of the admissible set. We con­
sider separately the ascent and descent segments of the trajectory. For simplicity
we assume that the wind is zero.

3.2.1 Ascent- In the ascent segment, the rate of cUmb is given by

(3.14)

where PR = PR(V) is the cruise power required at some h, V. On ascent the power
must satisfy the constraint:

(3.15)

If we consider V as fixed, then P must be chosen to minimize

cT + cF(a + bP) - yV
kCLB (P ~ PRJ

(cT + cFa - yV) + cFbP
kCLB(P - PR)------

(3.16 )

The graph of (3.16) is as shown in figure 3.2. Since (3.16) is a bilinear function
of P, its derivative is nowhere zero and the region P:: PR is excluded from the
allowable control region by (3.15). Consequently, for the ascent segment of the tra­
j ectory we have

(3.17)

Since the optimal P is established by (3.17), we c.an now consider the variation of
HUp with V.

F tV
HUp

-max
(3.18)

kCLB(Pmax - PRJ

"here Fmax = F(Pmax) is now fixed and PR has the general shape shown in figure 3.3.
Generally, we can assume the optimal V will lie on the increasing region of PR
and must be less than some specified Vma x for each altitude. Further V is bounded
by V

J
• the equilibrium flight veloeity for P = Pmax' The numerator of (3.18), being

linear in V with Fma x and both positive~ has one zero which we call Vz' that
is~ z ~ O. Depending upon whether Vz > VI or Vz < Vl~ the graph of BUp
takes On different shapes as shown in figures 3.4(a) and 3.4(b).
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If V
1

< Vma x' V
1

establishes the upper-velocity
> VI)' then there exists a well-defined minimum at

boundary. If case (a) occurs
V = V* such that

dHUpl = 0

dV IV=V*
(Note HUp > 0, dHUp/dV < 0 at V 0)

If case (b) occurs then lim HUp = _00 and the minimization problem is obviously
V+V

1
ill-posed. Observe that by definition, Vz satisfies

Fma x
Vz

(F)min -
V V Ih=hCR

(3.19)

Consequently, we see that for case (b) to occur

min
V (~)h-h

- CR

(3.20)

That is the optimum cruise cost increases with altitude. Further, if the cruise cost
is not an absolute minimum on rO-~-hCR]--at the cruise altitude, thenthis case must
occur at some point, causing the b reakdown in the optimality conditions.

The situation changes slightly if there exists a velocity limit, Vma x' which
makes the equilibrium speed V, unattainable. In this case, as shown in figure 3.5,
the minimum of HUp occurs at V = Vma x' Can this case actually occur? From the
definition of Vz we have

F
Vma x

Hence, the Vma x limitation in this case forces the helicopter to climb at a speed
which is more fuel expensive than at the cruise altitude. Physically this seems to
be a realizable situation.

In the alternate case where Vz < Vma x < V" then H~p < 0 and Fmax/Vmax < 1jJ.
Physically it seems contradictory to even want to climb in this condition since by
lowering the applied power (thereby lowering F) we can cruise at a lower altitude
than heR and expend les~ fuel per unit distance traveled. This apparent paradox is
caused by the fact that we are treating hCR as a fixed limit. Consider min(F/V)

V
as a function of altitude, where F is evaluated at the cruise power. If min (F/V)

V
is increasing on the interval [h,hCR] then direct construction shows that a lower
cost can be achieved by cruising at h rather than at hCR' The optimality of hCR
(for small perturbations) must be ascertained examining the t r ave r sa Li.ty condition
O.lle). This condition is examined later in this section.

2 In the descent phase the power must be chosen to

(P -

11
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Using the same form of the cost function as in the ascent we have

F - 1j;V
(P R - P) /W

(3.21)

where for simplicity we assume knST = 1.
tion, HnST is again bilinear in P. The

For fixed V
graph of HnST

and a linear
is shown in

fuel-flow func­
figure 3.6.

For any V
straint boundary
HnST with speed
a linear function
properties

it is apparent that the minimum
P <;:;; Pmin' We can now set P =:

V. From (3.21) with F = Fmin
of V with a zero at V = Vz .

of HnST is achieved at the con­
Pmi n and examine the variation of

a constant, the numerator is again
We deduce then that HnST has the

o ., dHnST---dV

lim HnST = 0 (- )
V+oo

(3.22)

Generally, because of the low fuel flow associated with Pmi u' the value Vz is
fairly low; hence, the graph of HnST is as shown in figure 3.7.

Conditions (3.22) imply that an absolute minimum of HnST
V = V~ST with V~ST > Vz. The ~inimum may not be achieved if
any event we will always have Hn ST < O.

must occur at some
Vmax < V;ST but in

3.2.3 An alternate descent limit- The use of a fixed minimum-power limit may
yield unacceptable descent rates in parts of the flight regime. Rather than specify
Fmi n, an alternate constraint has been implemented to constrain the descent rate

P
< ~ax (constant) (3.23)

In view of the previous discussions on the variation of
(3.23) is an equality on the optimum descent trajectory.
descent

HDST with P, the inequality
This implies that on the

where llPO" is a constant depending on the descent rate. The descent Hamiltonian is
of the form

For the
mum at
is that

typical variation of
IJ V* (' 1 1= DST- ~enera~ y,
this minimizing speed

PR with V (fig.
HbsT is found to
is independent of
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3.4), HDST has a well defined mini­
be negative. An important observation
the descent rate.



3.3 Behavior of Optimal Solution as h + hCR

In the fixed-wing case Erzberger and Lee found that the optimal climb/descent
speed and power generally blended in smoothly with the corresponding cruise param­
eters as h + hCR. In addition a nonzero cruise segment generally only oecurred at
one altitude the altitude for optimum cruise, where ~ is a minimum. For the
helicopter problem in this report, the assumed linear fuel-flow relationship with
power forces the power to be discontinuous at the eruise altitude. We shall show,
however, that the velocities at cruise are continuous. In addition it will be shown
that the climb and descent coefficients introduced in section 2 cause the cruiae
behavior of the helicopter to be significantly different from that of the fixed-Wing
aircraft.

At any altitude below hCR the optimum power on the climb/descent segments are
Pmax/Pmin as derived previously. Hence, we fix the power at these levels to inves­
tigate the behavior of the optimal speeds as in the vicinity of hCR.

3.3.1 Oescent segment- Consider here the case of a fixed descent rate limit
where PEST - Fa - Po· Then we have

(cT + cFWF) - ~V

hOST

cT + cF[a + b(PR - Po)] ­

hOST

-cFbF 0 <r +
= + -=---=----~--

hOST

where FCR = cT + cF(a
cruise at the speed V
for any h < hCR

+ bFR) is the cost integrand associated with equilibrium
and altitude h. The optimal descent speed V~ST satisfies

By definition we have, however,

= 0 = hOST (d%~~ - ~) (3.24)

d FCR----
dVca VCR
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or

(
dF )

dVCR h=h CR

(3.25)

Comparing (3.24) and (3.25) we see that as h + hCR' VDST + VCR'

3.3.2 Ascent segment- On the climb segment the optimal ascent speed is given by

VrJp = argmin
V

Fmax - 1/iVup
Pmax - PR

(3.26)

where superfluous constants have been discarded from the Hamiltonian.

At the minimum (assuming the minimum lies in the interior of the allowable
speeds)

or

F - ,IVmax Y UP

(Pmax - PRj 2

= 0

= 0 (3.27)

For the assumed cost function and the linear fuel-flow relation we have

and

(3.28a)

= (3.28b)

Using (3.28a) and (3.28b) in (3.27), we have

= (3.29)

The optimum VUP is the solution to (3.29)
y and relationship (3.25) we note that as
since

at each
h + hCR'

From the definition of
+ VCR satisfies (3.29)
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Our conclusion then is that the optimal ascent and descent speeds approach the cruise
speed as h + hCR'

While the optimal power is discontinuous at cruise. we see that as 11 -+ heR and
V + VCR the hyperbolic variations of HUp and HnST shown in figures 3.2 and 3.6
tend to a rectilinear hyperbola implying that the Hamiltonians are effectively inde­
pendent of power in this region. Thus, while the limits of the minimizing values are
discontinuous, the Hamiltonian itself is very insensitive to these variations at the
point of discontinuity.

3.3.3 Hamiltonian at cruise- The optimal cruise altitude is determined from the
transversality condition

(3.11e)

evaluated at hCR'

Thus it is of interest to examine the behavior of H* to gain some insight into
the nature of the cruise. Since

Vup = VOST VCR at h hCR

then

H* * *= HUp + HnST

which from (3.18 ) and (3.21 ) becomes

Fmax - 4N CR

(kCLB/Hup) (P max -

F - lJiVmin CR
(3.30)

Using ~VCR = FCR' and the linear fuel-flow function (3.13), equation (3.30) can he
written

cFb(Pmi n - PCR)

(kOSTNoST) (PCR - Pmin)

(3.31)

H*

Asst.lll1e
k CLB =

range

that for
kOST = 1
RCR = 0

a short_ ~ruise segment, WUP ~ W~ST ~ W. If we consider the case where
then f! = O. From (3.1ie), H = 0 implies that the optimum cruise

except at the optimum cruise altitude h* where

argmin [.~ ]
h

(3.32)

At h*, condition (3.11e)
from the total range constraint.

o ~ 0 and the optimum cruise range is determined
* * '"Nato that tho two terms in Hare HUp and HOST
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implying that for this case these terms are equal in magnitude and opposite in
sign.

For the case where the climb and descent factors are not equal

H* = cFbW (If-- - ._1 )
CLB "uST

There exists a nonzero cruise distance at all cruise altitudes given by:

(3.33)

(3.34)

Equation (3.33) also confirms our earlier result that the cruise cost must be decreas­
ing at the cruise altitude since otherwise the cruise range from (~.34) would be nega­
tive. As hCR + h*, the derivative (d/dh) (FCR/VCR) + 0 while H ~ O. Hence, for
this case the optimal cruise altitude for any fixed range trajectory is always below
the optimal cruise altitude h*.

The use of the climb and descent factors introduces an additional dilemma, how­
ever, which is yet to be resolved. For the data used in this report we have assumed
(and verified computationally) that kCLB < kDST. For this case H* > 0 and the
optimum range can be ascertained by use of (3.34). The dilemma concerns the hypo­
thetical case where kCLB > kDST' If this case were to occur then H* < O. Equa­
tion (3.34) can only be satisfied if FCR/VCR is increasing with altitude. Tbis,
however, is precisely the case which was disallowed in minimization of HUp, HDST at
altitudes below cruise.

4. NUMERICAL RESULTS

4.1 Characteristics of Fuel Optimal Trajectories

A computer program was written which generates the optimal trajectories using
the helicopter model and optimization algorithm developed in this report. The pro­
gram numerically integrates the climb and descent portions of the trajectory optimiz­
ing the ascent and descent Hamiltonians at each step, simultaneously. For the cruise
segment the cruise cost and speed are computed using a cruise weight computed as the
average of the beginning and end weights on the cruise. Since these weights are not
known initially, this process is done iteratively until the weights converge. Unless
specifically mentioned otherwise, all results in this report are for the case of
minimum fuel cost in zero wind.

A typical set of trajectories is as shown in figure 4.1 for an initial weight of
14,000 lb. To generate these curves tbe cruise altitude was first specified, then
the cruise range was calculated based on boundary condition (3.lle), which must be
satisfied at the optimal altitude and range. A descent rate constraint of 30 ft/sec
was used on all trajectories. As a consequence of a nonunity climb factor
(kCLB = 0.75, kDSI = 1.0) all trajectories have a nonzero cruise range which in fact
shows very little variation with altitude. The lack of variation is due primarily
to the fact that the derivative dw/db is almost constant in this entire altitude
range. Since the final Hamiltonian H* is also relatively fixed, the subsequent
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At low initial weights (see fig. 2.7)
At high weights (~19,000 Ib) the opti-

cruise range computed from (3.11e) exhibits very little variation with altitude.
The same is true for moderately higher weights as shown in figure 4.2.

For weights less than about 17,000 Ib, the cruise cost is a monotonically
decreasing function of altitude. Renee, for longer ranges, the optimal cruise alti­
tude is increasingly higher. For the S-61N the maximum allowable altitude is
12,000 ft. At this altitude and using an initial weight of 14,000 Ib, the natural
boundary condition on altitude yields a trajectory with total range of about 33 n. mi.
(see fig. 4.1). For a trajectory with a specified range greater than this value, the
minimrnn fuel trajectory cruises at the limit altitude of 12,000 ft. At this alti­
tude, the cruise segment is determined not from the transversality condition, but
from the total range condition:

It is important to note that the mathematically optimum altitude is very signifi­
cantly a function of initial weight. The most important parameter in establishing the
optimum altitude is the variation with altitude of the quasi-steady "cruise cost"
+ = min(WF!V). Using our variational approach, the optimum cruise altitude is at or

V
slightly below, the altitude for minimum +.
the optimum cruise is at hmax = 12,000 ft.
mum altitude is at hmin ~ O.

Although the curves of cruise cost change smoothly with weight, the optimum alti­
tude changes rather abruptly from hmax to hmin at a weight slightly greater than
17,000 lb. It should be pointed out that at the higher weights and higher altitudes,
the smoothed power model (A) departs significantly from the pointwise model (B).
Thus, while at 17,000 Ib the smoothed model (A) predicts improved cruise performance
up to hmax' the pointwise model (B) predicts rapidly deteriorating performance for
altitudes greater than about 8,000 ft. Similarly at the 19,000 Ib weight, for alti­
tudes above 8,000, the smoothed model (A) predicts substantially less degradation
than the pointwise model (B).

The significance of these differences can be more easily evaluated by observing
the fuel variation on minimum fuel trajectories, where the cruise altitude is con­
strained at a nonoptimal value. Figure 4.3 demonstrates this effect using the
smoothed (A) model. For the 14,000 Ib vehicle, cruise at the optimal altitude of
12,000 ft represents about a 5% improvement over cruise at 1,000 ft. Since the two
fitting techniques (A and B) agree so closely in this low-weight range these results
are felt to be reliable and represent a true fuel savings. For the heavy weight of
19,000 Ib, the figure similarly predicts a substantial fuel saving of about 10% by
choice of the lowest possible cruise altitude (here 1,000 ft). Comparison of the
optimal cruise costs in figure 2.7 indicates that at the lowest altitude the "A" model
predicts significantly better fuel consumption than the "B" model, hence the low value
of about 480 Ib fuel in figure 4.3 is probably not attainable. At high altitudes the
reverse is true, however J as the "A" model does not fit the cruise data well in this
range and predicts significantly better fuel consumption than the "B" model. Thus,
while the trend predicted in figure 4.3 is correct the actual minimum fuel used is
probably in error and the penalty for high cruise altitudes may be greater than that
shown.

At the intermediate weight of 17 ,000 lb the cruise cost of 2.7 shows
little variation with altitudes for performance model "A." Similarly in figure 4.3
the total fuel consumed varies by only about 10 Ib for all cruise altitudes from
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1,000 ft to 12,000 ft. Thus, in this weight range there is little to be gained by
optimizing cruise altitude (of course velocity must still be optimized!). In view
of the differences between the "A" and "B" models at the high altitudes, conservative
engineering judgment indicates that a cruise altitude below 8,000 ft is probably
appropriate.

The identical curves for a 100 n. mi. range mission are shown in figure 4.4.
While the behavior is similar, we observe that there is slightly more variation in
the 17,000 lb case. The reason for this is that the cruise fuel is based on the aver­
age cruise weight. Thus, while the initial weights on figures 4.3 and 4.4 are the
same, the "average cruise weight" for the 100 n . mf., range is almost 200 lb less than
in the former case. Note also that since the ~ is different, the ascent and descent
Hamiltonian is slightly different; therefore, the resulting climb and descent profiles
are not exactly the same in the two cases. In general, a smaller, more favorable
cruise parameter y causes the ascent leg of the optimal trajectory to be steeper and
to climb more quickly, making the climb segment shorter and the cruise segment longer.

4.2 Speed Variation on Optimal Trajectories

Optimal climb speeds on the minimum fuel trajectories tend to be much faster than
tbe speeds for fastest climb rate (60-70 knots). At comparable altitudes the speed
in descent is generally faster than the speed in climb. The variation of the optimal
speeds for one particular weight is shown in figure 4.5 for various cruise altitudes.
Dumerical minimization of the Hamiltonian does confirm, in fact, that at the cruise
altitude, the three speeds VUP' VnST' and VCR all coalesce to a single value. The
advantage of trading off climb rate for forward speed can be seen in table 4.1 which
compares an optimal climb-cruise-descent profile with a fastest climb-optimal cruise­
optimal descent profile of the same total range. For the fastest climb rate, flight
speeds are between 60 and 70 knots true airspeed.

,"'hile the advantage is slight, only about 2%, it should be pointed out that the
fuel consumed in this case is dominated by the long cruise. In a shorter-range tra­
jectory, it is antitipcated that the relative advantage of the optimal profile will
be increased.

Sensitivity of the speed profile to the helicopter performance model can be
deduced by computing trajectories under different hypotheses. Thus, figure 4.6 shows
the effeet of using the smoothed model (A) or the pointwise model (8). In this case
the speed differences are less than 5 knots everywhere on the trajectory. Even
less important in determining the elimb velocity is the climb factor keLB' Fig-
ure 4.7 shows that the optimal speed Is essentially independent ef the climb factor
for the case shown. The optimal trajectory will of cour se differ substantially. The
lack of sensitivity to these model parameters is typical of the cases examined and
seems to indicate that the optimal results presented here can be applied (judiciously
as alw8Ys) even if there exists some uncertainty regarding the correctness of the
helicopter dynamic model.

4.3 Effect of Winds

The magnitude and direction of winds are known to have a substantial effect on
the optimal performance of any aircraft. This effect is accentuated on a conventional
he licopter because of the low flight speeds which make even a moderate wind fairly
important. The minimum fuel consumption for the l7,OOO-Ib helicopter flying in
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-20, 0, and +20 knot,wind is shown in figure 4.8 (negative values are headwinds,
positive values are tailwinds). The effect of the wind on the fuel consumption is
obviously an important factor, but it is perhaps more important to note that there
is a substantial difference in the "optimallf flight profile through such an environ­
ment. Figure 4.9 compares the optimal airspeeds on these same trajectories. A
tailwind tends to decrease the optimal airspeed at all altitudes and to increase
it for a headwind. This is in accord with the generally accepted effect of wind
on the quasi-steady performance quantities. Wind variation with altitude is also
easily handled by the optimization algorithm and again the altitude variation can
have an important role in determining the optimal speed profile and the optimal alti­
tude. Figures 4.10 and 4.11 show the fuel cost and the optimal climb speed for tra­
jectories with various winds, including a linear wind wher e the wind velocity varies
from 20 knots at h = 0 to SO knots at h = 12,000 ft. While these winds are fairly
substantial, they do represent, in fact, a typical environment for helicopters oper­
ating in off-shore areas. The winds are added into the trajectory logic with little
or no increase in complexity. The main difficulty with incorporating winds into an
on-line procedure is the problem of determining the actual wind profile in the area
of flight. If such knOWledge can be obtained, the potential payoff is substantial.

4.4 General Cost Optimization

The previous results have all applied to a direet fuel minimization. The gen­
eral cost function specified in this analysis allows a weighting between time and
fuel. This can be used to minimize a "dollar" cost if an appropriate cost of time
and fuel is specified. In addition, by varying the weight factor on time (cT)' the
total flight time ean be controlled. Determining an appropriate numerical value for
cF is done by simply inspecting the cost of fuel. For standard JP-4 at $1.l6/gal
at 6.5 Ib/gal, this leads to cF = SO.18/1b. The time weight factor, cT' is a more
subtle number to select. While direct operating costs are generally quoted as
$500-$1,000/hr, the cost savings due to a decreased time is probab less than this
value.

Using cF = SO.18/1b, the effect of c T on the time of flight and the fuel
required is plotted as a function of the cruise altitnde in figure 4.12. Even when
cT = 0 (direct fnel minimization) the optimal speeds lie close to, or on, the VNE
boundary (compare the VNE profiles shown in figure 2.8 to thc speed profiles as in
figures 4.9 and 4.11). The sudden slope discontinuity, at hCR" 8,000 ft in fig­
ure 4.12 on the cT =:: 0 curve indicates the point where the optimal cruise speeds
are being pushed back by the receding VNE boundary, thereby increasIng the time of
flight. By making cT positive, optimal speeds are increased. When cT reaches
$lOOjhr, the "optimal" speed is simply VNE at all points on the trajectory inde­
pendent of the cruise altitude chosen. In this case, the minimum flight time occurs
at about a cruise altitude of 5$000 f t , whe r e the maximum VNE this weight)
occurs. If the cruise altitude is ixed, increasing cT beyond $IOa/hr cannot change
the trajectory since the velocity is aLr e ady at a constraint bcun da r y • It will
change the "coa t " certainly and will change the "op t t rnurn" cruise altitude - w.it.h
larger values of the optimal cruise altitude to drop to the minimum time
altitude.

The values of to use in a realistic environment must be
determined by the helicopter operator. For this j with a fixed 50 n~ mi.
range, the minimum-fuel ectcry cruises at 12}OOO ft and uses 375 Ib fuel with a
flight duration of 0,45 hr, or 2; min. For the minimum-time ector], on the other
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hand, the cruise is at 5,000 ft, the total trip time is about 5 min shorter, and the
fuel consumed is an extra 100 lb.

5. CONCLUDINC REMARKS

The on-line determination of optimal flightpaths for helicopters has been shown
to be useful and computationally feasible. The two developments which permit the
solution to this problem are: (1) an efficient, simple performance model for the
helicopter and (2) use of the simplified "climb-cruise-descent," trajectory­
optimization model.

To ensure the accuracy requirement for the helicopter performance model it
seems mandatory that the analytical model be empirically curve-fitted to the flight­
test data. The model used in this report is based on a simple power model fit for
various altitudes and weights. For more general studies, a more refined model would
be desirable and should probably be based on a parameterization in terms of more
fundamental performance variables such as thrust coefficient and advance ratio.
Nevertheless, for the specific vehicle under consideration, the optimal trajectories
dS computed are believed to be quite realistic. The primary characteristics of the
optimal trajectories can be summarized as follows:

1. The speeds on fuel optimal trajectories tend to be fairly fast, that is,
near the maximum speed of the vehicle. Speeds on the climb leg of the optimal tra­
jectories tend to be significantly faster than the speed for greatest climb rate.
As the length of the cruise segment increases, the optimal climb speed does, however,
tend to approach that for greatest rate of climb. For many cases, particularly at
high altitudes, the optimal climb speeds are limited by the VNE boundary of the
aircraft. This situation and the fact that much of the flight manual power required
data are also outside the VNE boundary seems quite unusual. If the quoted VNE
boundary can reasonably be extended some improvement in performance could be achieved.

2. In contrast to the fixed-wing aircraft, all optimal helicopter trajectories
have a nonzero cruise segment because of the nonunity climb factor used in the per­
formance model.. The cruise segment distance tends to be relatively constant at a
small value until the cruise altitude approaches the altitude for minimum cruise cost
at which point the cruise segment is determined by the range constraint.. In practice
the optimal altitudes are at sea level for the heavy weight case (I' ~ 17,000 Lb ) and
at 12,000 ft (the maximum altitude) for low weights (W ~ 15,000 lb), For the inter­
mediate weights (16,000 c 17,000 Ib) the optimal altitudes change from the minimum to
the maximum value. The difference in fuel consumed for all cruise a.ltitudes is
slight, however, in this weight range and in view of uncertainty associated with the
high altitude performance model for this weight, the low to intermediate cruise alti­
tude should be chosen.

3. The descent segment of the trajectory is always flown on a minimum power
constraint of some type. While the fuel consumed in the descent segment is generally
much less than on the remainder of the trajeotory (henoe, fuel optimization is much
less critical)~ the descent range is crucial in determining the length of the remain~

iug trajectory segments. A primary consideration in establishing any descent criteria
is to avoid autorotation and the vortex ring state, The constraint used almost
exc in this report was a fixed descent rate of 1,800 ft/min. This was
judged reasonable for VFR eetories based on conversations with several helicopter
pilots. on weather and to the ground} lower descent rates
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could be imposed. It should be noted that optimum flight speeds are independent of
the particular descent rate chosen.

Because the descent range is crucial in determining the length of the other tra­
jectory segments, additional input is needed, particularly from pilots, to determine
what type of descent criteria is most appropriate for either manual or automatic
flightpath control.

4. Substantial decreases in time of flight can be achieved with only a small
fuel penalty. Generally, the weighting of time on the optimal trajectory tends to
force the cruise altitudes toward the altitude for greatest true airspeed - about
5,000 ft for this vehicle (the exact altitude depends on weight). Speeds in this
case are generally on a VNE boundary.

Further work needs to be performed to improve and/or validate the performance
model used in this report. This should include more detailed analytical modeling as
well as flight-test verification. Topics for further study include: (1) trajectory
integration with the takeoff and landing phases of vehicle operation, (2) integration
of the optimal trajectory system with 3-D and 4-D flightpath guidance systems, and
(3) more rigorous comparison of the optimal trajectories with the results of an
unconstrained optimization.
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TABLE 2.1.- S-6lN HELICOPTER COEFFICIENTS

A - rotor area
Ci - solidity
cd - average drag coefficient
f e - drag area
Vt - rotor tip speed

TABLE 4.1.-

3019 ft 2

0.077
0.010
30 ft 2

659 ft/sec

Condition Optimal Best R/C (ascent)

Range up 1l.5 5.5
Range cruise 75.4 91.4
Range descent 13.1 13.1

Total range 100.0 100.0

Fuel up 145
I

117
Fuel cruise 511 553
Fuel descent 60 60

I 7li
--

Ltal fuel 730
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